71 research outputs found

    Implementation of a dual platelet inventory in a tertiary hospital during the COVID-19 pandemic enabling cold-stored apheresis platelets for treatment of actively bleeding patients

    Get PDF
    Background: To increase preparedness and mitigate the risk of platelet shortage without increasing the number of collections, we introduced a dual platelet inventory with cold-stored platelets (CSP) with 14-days shelf life for actively bleeding patients during the COVID-19 pandemic. Study design and methods: We collected apheresis platelet concentrates with blood type O or A. All patients receiving CSP units were included in a quality registry. Efficacy was evaluated by total blood usage and laboratory analysis of platelet count, hemoglobin, and TEG 6s global hemostasis assay. Feasibility was evaluated by monitoring inventory and a survey among laboratory staff. Results: From 17 March, 2020, to 31 December, 2021, we produced 276 CSP units and transfused 186 units to 92 patients. Main indication for transfusion was surgical bleeding (88%). No transfusion reactions were reported. 24-h post-transfusion patient survival was 96%. Total outdate in the study period was 33%. The majority (75%) of survey respondents answered that they had received sufficient information and training before CSP was implemented. Lack of information about bleeding status while issuing platelets, high workload, and separate storage location was described as main reasons for outdates. Discussion: CSP with 14-days shelf life is a feasible alternative for the treatment of patients with bleeding. Implementation of a dual platelet inventory requires thorough planning, including information and training of clinical and laboratory staff, continuous follow-up of practice and patients, and an easy-to-follow algorithm for use of CSP units. A dual platelet inventory may mitigate the risk of platelet shortage during a pandemic situation.publishedVersio

    In vitro quality of cold and delayed cold-stored platelet concentrates from interim platelet units during storage for 21 days

    Get PDF
    Background and Objectives: Based on previous success using apheresis platelets, we wanted to investigate the in vitro quality and platelet function in continuously cold-stored and delayed cold-stored platelet concentrates (PCs) from interim platelet units (IPUs) produced by the Reveos system. Materials and Methods: We used a pool-and-split design to prepare 18 identical pairs of PCs. One unit was stored unagitated and refrigerated after production on day 1 (cold-stored). The other unit was stored agitated at room temperature until day 5 and then refrigerated (delayed cold-stored). Samples were taken after pool-and-split on day 1 and on days 5, 7, 14 and 21. Swirling was observed and haematology parameters, metabolism, blood gas, platelet activation and platelet aggregation were analysed for each sample point. Results: All PCs complied with European recommendations (EDQM 20th edition). Both groups had mean platelet content >200 × 109/unit on day 21. The pH remained above 6.4 for all sample points. Glucose concentration was detectable in every cold-stored unit on day 21 and in every delayed cold-stored unit on day 14. The cold-stored group showed a higher activation level before stimulation as measured by flow cytometry. The activation levels were similar in the two groups after stimulation. Both groups had the ability to form aggregates after cold storage and until day 21. Conclusion: Our findings suggest that PCs from IPUs are suitable for cold storage from day 1 until day 21 and delayed cold storage from day 5 until day 14.publishedVersio

    Effect of leukoreduction and temperature on risk of bacterial growth in CPDA-1 whole blood: A study of Escherichia coli

    Get PDF
    Background Collection of non-leukoreduced citrate-phosphate-dextrose-adenine (CPDA-1) whole blood is performed in walking blood banks. Blood collected under field conditions may have increased risk of bacterial contamination. This study was conducted to examine the effects of WBC reduction and storage temperature on growth of Escherichia coli (ATCC® 25922™) in CPDA-1 whole blood. Methods CPDA-1 whole blood of 450 ml from 10 group O donors was inoculated with E. coli. Two hours after inoculation, the test bags were leukoreduced with a platelet-sparing filter. The control bags remained unfiltered. Each whole blood bag was then split into three smaller bags for further storage at 2–6°C, 20–24°C, or 33–37°C. Bacterial growth was quantified immediately, 2 and 3 h after inoculation, on days 1, 3, 7, and 14 for all storage temperatures, and on days 21 and 35 for storage at 2–6°C. Results Whole blood was inoculated with a median of 19.5 (range 12.0–32.0) colony-forming units per ml (CFU/ml) E. coli. After leukoreduction, a median of 3.3 CFU/ml (range 0.0–33.3) E. coli remained. In the control arm, the WBCs phagocytized E. coli within 24 h at 20–24°C and 33–37°C in 9 of 10 bags. During storage at 2–6°C, a slow self-sterilization occurred over time with and without leukoreduction. Conclusions Storage at 20–24°C and 33–37°C for up to 24 h before leukoreduction reduces the risk of E. coli-contamination in CPDA-1 whole blood. Subsequent storage at 2–6°C will further reduce the growth of E. coli.publishedVersio

    Late onset sensory-motor axonal neuropathy, a novel SLC12A6 related phenotype

    Get PDF
    We describe five families from different regions in Norway with a late onset autosomal dominant hereditary polyneuropathy sharing a heterozygous variant in the SLC12A6 gene. Mutations in the same gene have previously been described in infants with autosomal recessive hereditary motor and sensory neuropathy with corpus callosum agenesis and mental retardation (Andermann syndrome), and in a few case-reports describing dominantly acting de novo mutations, most of them with onset in childhood. The phenotypes in our families demonstrated heterogeneity. Some of our patients only had subtle to moderate symptoms and some individuals even no complaints. None had central nervous system manifestations. Clinical and neurophysiological evaluations revealed a predominant sensory axonal polyneuropathy with slight to moderate motor components. In all ten patients the identical SLC12A6 missense variant, NM_001365088.1 c.1655G > A p.(Gly552Asp), was identified. For functional characterization, the mutant potassium chloride cotransporter 3 was modelled in Xenopus oocytes. This revealed a significant reduction in potassium influx for the p.(Gly552Asp) substitution. Our findings further expand the spectrum of SLC12A6 disease, from biallelic hereditary motor and sensory neuropathy with corpus callosum agenesis and mental retardation and monoallelic early-onset hereditary motor and sensory neuropathy caused by de novo mutations, to late onset autosomal dominant axonal neuropathy with predominant sensory deficits

    Discovery of shale gas in organic rich Jurassic successions, Adventdalen, Central Spitsbergen, Norway

    Get PDF
    Thermogenic dry gas flowed from Jurassic sections in the DH5R research well drilled onshore in Adventdalen, central Spitsbergen, Arctic Norway. The DH5R gas originates from the organic-rich units of the mudstone-dominated Middle Jurassic to Lower Cretaceous Agardhfjellet Formation, which is the onshore equivalent to the Fuglen Formation and the prolific oil and gas generating Hekkingen Formation in the southern Barents Shelf. Low-permeable, low-porosity sandstones from the Upper Triassic De Geerdalen Formation of the neighbouring DH4 well were oil-stained and gas was also collected from this interval. Gas from the two stratigraphic intervals have different compositions; the gas from the Agardhfjellet Formation is drier and isotopically heavier than the gas from the Upper Triassic succession. Both gases originated from source rocks of maturity near the end of the oil window (1.1 < Ro < 1.4% Ro). Maceral analyses of the Agardhfjellet Formation indicate that the more silty parts contain a high percentage of vitrinite-rich type III kerogen, whereas the clay-dominated parts are rich in liptinitic type II kerogen. The Agardhfjellet Formation has therefore the potential to generate both oil and gas. Several simulations based on pressure data and flow rates from the DH5R well were run to evaluate if the gas accumulation in the Agardhfjellet Formation is producible, i.e., can it be commercial shale gas. The models demonstrate how changes in the drainage area size and form, well types (vertical versus horizontal), number and length of induced fractures and thickness of the Agardhfjellet Formation affect gas production rates and producible volumes. Despite uncertainties in the input data, simulations indicate that the shale gas accumulation characterised in Adventdalen is producible. This gas can have major environmental benefits as an alternative for local power generation compared to coal.publishedVersio

    MFN2 point mutations occur in 3.4% of Charcot-Marie-Tooth families. An investigation of 232 Norwegian CMT families

    Get PDF
    Background Point mutations in the mitofusin 2 (MFN2) gene has been identified exclusively in Charcot-Marie-Tooth type 2 (CMT2), and in a single family with intermediate CMT. MFN2 point mutations are probably the most common cause of CMT2. Methods Two-hundred and thirty-two consecutive unselected and unrelated CMT families with available DNA from all regions in Norway were included. We screened for point mutations in the MFN2 gene. Results We identified four known and three novel point mutations in 8 unrelated CMT families. The novel point mutations were not found in 100 healthy controls. This corresponds to 3.4% (8/232) of CMT families have point mutations in the MFN2 gene. The phenotypes were compatible with CMT1 in two families, CMT2 in four families, intermediate CMT in one family and distal Hereditary Motor Neuropathy (dHMN) in one family. This corresponds to 2.3% of CMT1, 5.5% of CMT2, 12.5% of intermediate CMT and 6.7% of dHMN families have a point mutation in the MFN2 gene. Point mutations in the MFN2 gene is likely to be the fourth most common cause to CMT after duplication of the peripheral myelin protein 22 (PMP22) gene, and point mutations in the Connexin32 (Cx32) and myelin protein zero (MPZ) genes. Conclusions The identified known and novel point mutations in the MFN2 gene expand the clinical spectrum from CMT2 and intermediate CMT to also include possibly CMT1 and the dHMN phenotypes. Thus, genetic analyses of the MFN2 gene should not be restricted to persons with CMT2

    Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions.</p> <p>Methods</p> <p>We describe two novel mutations in the connexin32 gene in two Norwegian families.</p> <p>Results</p> <p>Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands.</p> <p>The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25–49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals.</p> <p>Conclusion</p> <p>The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode.</p

    Two novel missense mutations in the myelin protein zero gene causes Charcot-Marie-Tooth type 2 and Déjérine-Sottas syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Charcot-Marie-Tooth (CMT) phenotype caused by mutation in the <it>myelin protein zero (MPZ) </it>gene varies considerably, from early onset and severe forms to late onset and milder forms. The mechanism is not well understood. The myelin protein zero (P<sub>0</sub>) mediates adhesion in the spiral wraps of the Schwann cell's myelin sheath. The crystalline structure of the extracellular domain of the myelin protein zero (P<sub>0</sub>ex) is known, while the transmembrane and intracellular structure is unknown.</p> <p>Findings</p> <p>One novel missense mutation caused a milder late onset CMT type 2, while the second missense mutation caused a severe early onset phenotype compatible with Déjérine-Sottas syndrome.</p> <p>Conclusions</p> <p>The phenotypic variation caused by different missense mutations in the <it>MPZ </it>gene is likely caused by different conformational changes of the MPZ protein which affects the functional tetramers. Severe changes of the MPZ protein cause dysfunctional tetramers and predominantly uncompacted myelin, i.e. the severe phenotypes congenital hypomyelinating neuropathy and Déjérine-Sottas syndrome, while milder changes cause the phenotypes CMT type 1 and 2.</p

    Genetic epidemiology of amyotrophic lateral sclerosis in Norway - a 2-year population based study

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons. In Europe, disease-causing genetic variants have been identified in 40-70% of familial ALS patients and approximately in 5% of sporadic ALS patients. In Norway, the contribution of genetic variants to ALS has not yet been studied. In light of the potential development of personalized medicine, knowledge of genetic causes of ALS in a population is becoming increasingly important. The present study provides clinical and genetic data on familial and sporadic ALS patients in a Norwegian population-based cohort. Methods: Blood samples and clinical information from ALS patients were obtained at all 17 neurological departments throughout Norway during a 2-year period. Genetic analysis of the samples involved expansion analysis of C9orf72 and exome sequencing targeting 30 known ALS-linked genes. The variants were classified using genotype-phenotype correlations and bioinformatics tools. Results: A total of 279 ALS patients were included in the study. Of these, 11.5% had one or several family members affected with ALS, whereas 88.5% had no known family history of ALS. A genetic cause of ALS was identified in 31 individuals (11.1%), among which 18 (58.1%) were familial and 13 (41.9%) were sporadic. The most common genetic cause was the C9orf72 expansion (6.8%), which was identified in 8 familial and 11 sporadic ALS patients. Pathogenic or likely pathogenic variants of SOD1 and TBK1 were identified in 10 familial and 2 sporadic cases. C9orf72 expansions dominated in patients from the Northern and Central regions, whereas SOD1 variants dominated in patients from the South-Eastern region. Conclusion: In the present study, we identified several pathogenic gene variants in both familial and sporadic ALS patients. Restricting genetic analysis to only familial cases would miss more than 40 percent of those with a disease-causing genetic variant, indicating the need for genetic analysis in sporadic cases as well.publishedVersio
    • …
    corecore